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WAVE FLOW OF VISCOELASTIC SUSPENSIONS IN TUBES 

K. V. Mukuk, V. G. Gasenko, and Z. Sh. Khudaibergenova UDC 532.135:622.323 

The wave propagation of viscoelastic suspensions in tubes is theoretically 
investigated, taking account of the deformation of the tube walls and the dis- 
persity of the medium within the framework of the rheological model of a vis- 
coelastic liquid with internal oscillators. A wave equation is obtained, and 
its limiting cases are analyzed. The dispersional relation is investigated 
with characteristic values of the rheological parameters of the medium. A 
numerical experiment is undertaken to investigate the influence of the the- 
ology of the medium on the structure and dynamics of wave perturbation of 
velocity perturbations. 

Introduction. The increased production of anomalous petroleum has prompted the active 
investigation of rheophysical problems of oil and gas production [i]. The high content 
of paraffin, naphthene, and aromatic hydrocarbons in the petroleum extracted and transported, 
which are present in the form of solid-phase disperse particles at the certain temperatures, 
means that the solid-hydrocarbon content may reach 18-20%. This leads to various anomalies 
in the rheodynamic properties of petroleum and hydrodynamic peculiarities in pipeline trans- 
port [2-3]. In particular, nonsteady wave conditions of flow appear in pipeline startup, 
with variation in pumping-station operating conditions, in emergency situations, etc. Exper- 
imental investigation of shock-wave propagation in paraffin petroleum and modeling of such 
media [4] shows the presence of new, previously undescribed features in the propagation 
of waves in petroleum. It is found that increase in solid-particle concentration leads to 
significant distortion of the structure and dynamics of shock-wave propagation. The distor- 
tion is such that it cannot be described within the framework of existing models of visco- 
elastic liquids [5]. In connection with this, there is a need to investigate the influence 
of rheological properties of suspensions on wave processes on the basis of fundamentally 
new models. The possibility of using the model of viscoelasticity with internal oscillators 
is considered below [6]. 

Since anomalous petroleum has viscoelastic properties [3], it is fairly difficult to 
determine the parameters of interphase interaction of such materials with disperse solid 
particles and hence to describe the media within the framework of a multispeed continuum. 
At the same time, taking into account that the densities of the liquid and solid phases 
are similar, and the particle dimensions are many times less than the distances between 
them, the tube diameters, and the given wavelengths, it is expedient to model the medium 
as quasi-homogeneous, neglecting the dynamic and inertial effects in the relative motion 
of the components. However, in this case, the medium is assumed to be continuous, and the 
presence of solid particles is only indirectly taken into account: by the change in rheologi- 
cal constants as a function of the concentration. This assumption of continuity of the 
medium eliminates the possibility of taking direct account of the influence of the particle 
dynamics onthe wave propagation at a wavelength much greater than the particle size. 

The problem of taking account of the dynamics of solid particles in a viscoelastic 
medium is analogous to that which arises in considering problems of nonlinear seismics [6]. 
On the basis of the analysis of experimental data on wave propagation in quartz and of various 
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moisture contents, a rheological model of a medium with internal oscillators, in which the 
discreteness and influence of oscillations 'of the particles on the wave propagation is taken 
into account, was proposed in [6]. The model of [6] is chosen as the basis here in deriving 
and analyzing the equations of wave propagation in a viscoelastic suspension. 

For the initial qualitative and quantitative analysis, it is expedient to use the sim- 
plest model of a linear viscoelastic liquid with internal oscillators relating to the tangen- 

I 

tial stress ~ to the deformation rate y in simple shear flow (an analog of the Maxwell model) 

�9 +X~ : ~? + x M ? .  ( 1 )  

A point above a symbol denotes total differentiation with respect to the time. The coeffi- 
cient of the third derivative has the dimensions of mass per unit length, and may be interpre- 
ted as some linear density of the particles. Characterizing the medium as discrete, the 
coefficient M must contain information on the density of the material and the particle size 
and concentration. The numerical value of M, like the other rheological constants, may 
only be found experimentally for each specific medium. 

Note that the model in Eq. (i) is only applicable in a limited frequency range: speci- 
fically, for ~ < ~cr = (~/ID) ~ This constant follows from the condition that the scatter- 
ing energy be positive after a cycle of oscillations with harmonic shear. For a paraffin- 
petroleum suspension, ~cr is of the order of i02-i03 sec -I. Corresponding constraints are 
imposed on the shear rate, since y ~ ~. Experimental investigations with a 20% suspension 
show that, up to shear rates of the order of i02 sec -l, a linear dependence of the stress 
on the deformation rate is valid. Hence, in the given range of deformation-rate variation, 
the linear rheological model in Eq. (i) may be used. 

A law for the tangential stress follows from Eq. (i) in the form 

I t 

= ~ (~y -{- s exp ( - -  (t - -  t')/~) dt'. ( 2 )  

In  c o n s i d e r i n g  t h e  l o n g i t u d i n a l  waves ,  t h e  dynamic  e q u a t i o n  in  t e rm s  o f  t h e  s t r e s s  
in  a c y l i n d r i c a l  c o o r d i n a t e  s y s t e m  

dV OP 1 0 
P dt Ox ff - - ( r Q  (3 )  r Or 

is expediently averaged over the cross-sectional area of a tube of radius R 0. It is assumed 
here that the velocity gradient at the tube wall is proportional to the mean velocity U 
according to the hypothesis of quasi-steady conditions 

0 v )  =(+)r=~0 - 4u 
r=~0 ~0 

The e q u a t i o n  o f  m o t i o n  in  t e r m s  o f  t h e  mean v e l o c i t y  o f  o n e - d i m e n s i o n a l  f l o w ,  t a k i n g  
a c c o u n t  o f  Eq. ( 2 ) ,  t a k e s  t h e  form 

dU 1 OP 8~ 
- -  - -  X 

dt 9o Ox ~,R2o9o 

x S U -[- exp ( - -  (t - -  F)/;L) dF. 
_ .  ~t Ot '~ 

The c o m p l e t e  s y s t e m  o f  e q u a t i o n s  a l s o  i n c l u d e s  t h e  m a s s - b a l a n c e  e q u a t i o n  

(4) 

o@R 2) + a (0uR~____~) = 0 (5)  
Ot Ox 

and t h e  a d i a b a t i c  e q u a t i o n  o f  s t a t e  u n d e r  t h e  a s s u m p t i o n  t h a t  t h e r e  i s  no vo lume r e l a x a t i o n  

8P 9 = ci6p. (6 )  

The system of equations is closed by the relation between the pressure perturbation in the 
liquid and the change in radius of a liquid-filled tube, in the form 

6 P -  EhT OZR 
R~ 6P + 9~hT - - a t  2 ( 7 )  
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No account is taken of the flexural rigidity of the tube. 
i 

Using the equations of simple waves as the first approximation, the system in Eqs. 
(4)-(7) reduces to two equations - Eqs. (4) and (8) - after eliminating p and R 

OP U OP +poC 2 OU Pr176 O3U - -0 .  (8) 
o--T- + O--x- -~x -~ 2c 4 atzox 

Then, by cross integration of Eqs. (4) and (8) with respect to the time and the coordi- 
nate and subsequent subtraction of one from the other, a wave equation of hyperbolic type 
in terms of the velocity is obtained 

a2u c a o2U c--~ 2 c 2 O~U +__8~ OU + 
2 

ot z, Ox z ax z ~T OxZOt z R~9o at 

a ( a~u_cza~u a~u ~ c ~ a,u ) 
+ ; ~ - - ~  Pt Ot ~ OxZ c 2 O. ax  2 o~ ax~at 2 

In d imens ion l e s s  v a r i a b l e s ,  Eq. (9) t a k e s  a form exped ien t  f o r  a n a l y s i s  

O2U O2U O2U z aau. 8 OU 
ao~ a~z a ~  a~ao~ ff Rea O0 + 

(9) 

(10) 
O ( a~U O~U a~U 2 a~U ) 

+ De ~ Pt ao~ a~z a~= a~ao~ = o. 

Here Pt is a parameter characterizing the influence of the oscillating masses; the acoustic 
Reynolds number Rea determines the relative contribution of viscous forces, and the Debord 
number De determines the relation between the relaxation time and the relative time of the 
process T. 

On the basis of Eq. (i0), comprehensive analysis of the evolution of one-dimensional 
velocity perturbations is possible. The influence of both the tube parameters and the rheo- 
logical properties of the suspension are taken into account here. The radius, wall thickness, 
density, and elastic modulus of the tube material determine its inertial properties, the 
influence of which on the structure and dynamics of propagation of the perturbations is 
found to reduce to the appearance of dispersional effects [7]. Hence, attention must focus 
basically on the influence of the rheophysical characteristics of the suspension. 

Linear Waves. If the amplitude of the perturbations is small, the nonlinear terms 
in Eq. (i0) may be neglected; then 

-- a2U-- a~U 8 au- 0 ( a2u a2u a~u ) 02u 
De o u  Pt =0 .  (11) ao---T-- aT  a~ao ~e R e a a o  + ao~ a~ ~ aVa-6~ 

From the viewpoint of the rheology of viscoelastic media, the influence of the relaxa- 
tion time on the wave evolution is of most interest. The following limiting cases are con- 
sidered. 

i. The relaxation time is much less than the characteristic time, i.e., De << i. In 
this case, Eq. (ii) takes the form 

a~ a~ a,U 8 a~ 
- 0. ( 1 2 )  

002 a~ o~ao 2 +  Rea a0 

Equation (12) corresponds to a wave propagating in a medium with dispersion due to the defor- 
mation of the tube walls and dissipation due to the viscosity of the suspension. The relax- 
ational properties of the medium in this case have no influence on the wave evolution. 

2. The relaxation time is much greater than the wave period, i.e., D >> i. In this 
case, Eq. (Ii) takes the form (under the assumption that dissipative effects are significant) 

p,  02U 02U 0~U 8 --  ( 1 3 )  
t ~ 0~ 2 0~200 z De Re~ U = 0. 

Equat ion  (13) cor responds  to  a wave p ropaga t i on  in a medium wi th  d i s p e r s i o n  and d i s s i -  
p a t i o n ;  the relaxational properties of the medium and the presence of solid particles have 
a significant influence. With increase in relaxation time, corresponding to increase in 
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Vph with respect to frequency ~ at various val- 

ues of rheological parameters. 

De, there is effective decrease in the dissipation. This is analogous to the effect described 
for viscoelastic relaxing liquids with gas bubbles [8]. It is also evident from Eq. (13) 
that the velocity of wave propagation decreases with increase in solid-particle content 
and corresponding increase in Pt. 

If the solution of Eq. (13) is sought in the form of a traveling plane wave U=exp (i(~8- 

kS)), the relation between the wave vector k and the frequency ] takes the form 

~2 = PtJ~ -- 8/(De Rea) (14) 

The frequency dependence of the phase velocity Vph may be determined from Eq. (14) 

_ i__~= )0,5 
VPh= ( 1--8/~O-e-ReaGD, (15) 

Curves of the phase velocity plotted from Eq. (15) are shown in Fig. la, where Rea = 0.8, 
De = 50.0, Pt = 1.0 (i) and 2.0 (2). The fundamental difference between these curves and 
those in Fig. ib is their for_m~ indicating that in the spectrum of the wave there is a 
lower bound on the frequency w = (8/(DeReaPt)) ~ and an upper bound w = i. A "window of 
transparency" is formed, by analogy with the well-known window of nontransparency of the 
medium [9]. It is noteworthy that shift in the phase-velocity maximum to lower frequency 
is observed with increase in Pt (increase in solid-particle content). Reduction in the 
maximum phase velocity occurs here. 

The curves in Fig. ib are plotted from the dispersion relation corresponding to Eq. 
( 1 1 )  

~ 2  = (1  - -  j2) (1 - -  i De m-) (1 - -  i (8 / (Rea~)  - -  G De pt)) 
ph 1 q- (8/(De J)  - - ~  De Pt )  2 ( 16 ) 

w i t h  t h e  f o l l o w i n g  p a r a m e t e r  v a l u e s :  1)  Rea  = 1 5 . 0 ;  De = 0 . 0 1 ;  P t  = 1 . 0  ( t h e  c a s e  when 
De ~ 1 ) i  2 )  Rea  = 1 5 . 0 i  De = 5 . 0 ;  P t  = 1 . 0  ( t h e  c a s e  when De ~ 1 ) .  I t  i s  e v i d e n t  t h a t  
with increase in De, i.e., with increase in relaxation time, there is an increase in phase 
velocity, corresponding to effective decrease in dissipation. 

Curves of the phase velocity in Eq. (16) are shown in Fig. 2 with Rea = 8-104 (negligi- 
ble dissipation), De = i00.0, and Pt = 1.0 (i), 1.5 (2), and 2.0 (3). It is evident that, 
with increase in Pt, the phase velocity decreases over the whole frequency spectrum. This 
confirms the conclusion that there is decrease in the velocity of wave propagation with 
increase in solid-particle content. 
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Fig. 2. Decrease in phase velocity Vph with increase in content of oscil- 
lating masses. 

Fig. 3. Time dependence of velocity perturbation U at various values of 
De. 

Numerical Solution of Nonlinear Equation. To elucidate the role of the rheological 
parameters of the medium in the structure and dynamics of the propagation of nonlinear per- 
turbations, numerical integration of Eq. (10) is undertaken with zero initial condition 
and a condition at the boundary taken in the form of a Gaussian distribution 

f f  (0, O) = exp ( - -  (3fr - -  O/ti)2), 0 < 3fr ti, 
(17) 

U (o, o) = exp ( - -  (3 - -  o/ t i  fr)Z), 0 > / 3 i t  ti.  

The condition in Eq. (17) corresponds to the appearance of a finite velocity perturbation 
at the left-hand end of the tube; the form and length of the perturbation are determined 
by fr and ti. 

The equation is approximated by an implicit five-layer finite-difference scheme of 
second order in 6 and first order in 0. The integration steps are chosen from the require- 
ment of stability of the difference scheme. As a result of integration, the time dependence 
of the velocity in the specified tube cross section 6" is constructed. 

Different values of De are taken in the integration of Eq. (i0). The results of the 
numerical experiment confirm the conclusion that there is effective decrease in dissipation 
with increase in relaxation time. The behavior of the perturbations in the cross section 
6" = 30.0 is shown in Fig. 3. The dashed curve shows the velocity perturbation at the 
left-hand end of the tube with 6 = 0.0 (ti = 8.0; fr = 0.5). Curve i corresponds to Rea = 
15.0, De = 0.5, Pt = 1.0, and curve 2 to Rea = 15.0, De = 5.0, Pt = 1.0. It is evident 
that the amplitude of the perturbation waves increases with increase in De. At large relaxa- 
tion times, the influence of the solid particles becomes significant. Curve 3 corresponds 
to Rea = 15.0, De = 5.0, Pt = 1.5. Here increase in amplitude and simultaneous decrease 
in velocity of propagationof the wave is noted with increase in Pt. 

Slowing of the perturbation-wave propagation and simultaneous increase in its amplitude 
with increase in Pt is also seen in Fig. 4, where Rea = 8.0, De = 50.0, Pt = 1.0 (I), 1.5 
(2), and ~* = 1.5, i.e., the combination of parameters corresponds to the limiting case 

45 

0 

I ',, I A I  

20 ~ \ ztO I I DO "U 

Fig. 4. Time dependence of nonlinear velocity perturbation 
corresponding to a linear wave with a "window of transparency." 
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in Eq. (13), It is evident that the structure of the wave differs considerably from that 
in Fig. 3. The appearance of a large rarefaction region moving behind the leading front 
of the wave is characteristic here. 

Conclusions. Analysis of perturbation-wave propagation in a viscoelastic suspension 
on the basis of a mechanical model with oscillating masses permits the following conclu- 
sion. Increase in the viscoelastic characteristics of the suspension, which may be due 
to increase in the content of paraffin fractions in the petroleum or reduction in temper- 
ature, leads to increase in relaxation time. This leads to increase in perturbation ampli- 
tude in wave propagation in pipelines and must be taken into account in hydrodynamic calcu- 
lations of the technological operating conditions of pipelines and other oil-industry equip- 
ment. At the same time, increase in solid-particle concentration also leads to increase 
in perturbation amplitude and decrease in propagation velocity. These data are in complete 
agreement with the experimental results obtained in a shock tube with shock-wave propagation 
in petroleum suspensions. 

Notation. c, r, cylindrical coordinates; t, time; V, longitudinal velocity coordinate; 
P, pressure; 0, density of suspension; ~, ~, tangential stress and deformation rate in sim- 
ple shear flow; l, D, relaxation time and viscosity of suspension; M, density of oscillating 
masses; U, mean longitudinal velocity; R, tube radius; E, PT, elastic modulus and density of 

tube material; hT, thickness of tube wall; ci, velocity of sound in the suspension; c 2 = 

/EhT/2Rop 0, velocity of sound in the wall of a tube (radius R0) containing liquid of densi- 

ty P0; c = cIc2//C12 + c22, Korteweg-Zhukovskii sound velocity; w T : c22 2~po/CV~ThTR0, oscil- 

lation frequency of tube wall; T = I/mT, characteristic time of process; De = I/T, Debord 
number; Rea = R02P0mT/~, acoustic Reynolds number; Pt = i + 8M/R02P0, parameter characteriz- 

ing the influence of the oscillating masses; Po, P0, R0, unperturbed values of the pressure, 

the density of the suspension, and the tube radius. Dimensionless variables: U, velocity; 

8 = s time; ~ = XmT/C , longitudinal coordinate; ~ = m/WT, frequency; k = kc/mT, wave num- 

ber; Vph = Vph/C, phase velocity; fr, ti, parameters determining the length and curvature of 
the leading wavefront. 
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